Convergence of a Recombination-Based Elitist Evolutionary Algorithm on the Royal Roads Test Function
نویسندگان
چکیده
We present an analysis of the performance of an elitist Evolutionary algorithm using a recombination operator known as 1-Bit-Swap on the Royal Roads test function based on a population. We derive complete, approximate and asymptotic convergence rates for the algorithm. The complete model shows the benefit of the size of the population and recombination pool.
منابع مشابه
Convergence Properties of Two ({\mu} + {\lambda}) Evolutionary Algorithms On OneMax and Royal Roads Test Functions
We present a number of bounds on convergence time for two elitist population-based Evolutionary Algorithms using a recombination operator k-Bit-Swap and a mainstream Randomized Local Search algorithm. We study the effect of distribution of elite species and population size.
متن کاملConvergence Properties of Two (μ+λ) Evolutionary Algorithms on OneMax and Royal Roads Test Functions
We present a number of bounds on convergence time for two elitist population-based Evolutionary Algorithms using a recombination operator k-Bit-Swap and a mainstream Randomized Local Search algorithm. We study the effect of distribution of elite species and population size.
متن کاملEMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملConvergence of Non-Elitist Strategies
| This paper oers suucient conditions to prove global convergence of non{elitist evolutionary algorithms. If these conditions can be applied they yield bounds of the convergence rate as a by{product. This is demonstrated by an example that can be calculated exactly. KeyWords| global convergence, non{elitist evolutionary algorithm , martingale theory
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011